Geometry Progression of skills

Fairisle Junior School

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	National curriculum objective	Vocabulary	Lesson ideas
Year 1	Identifying shapes and their properties - Recognise and name common 2D/3D shapes	2D 3D Rectangle Square Circles Triangles Cuboids Cubes Pyramids Spheres	How many different shapes can you spot on the superheroes? Applicable for all year groups- use chatterpix for children to verbally explain the properties of shapesMrP ICT

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Year 2	Identifying shapes and their properties - identify and describe the properties of 2D shapes including the number of sides and line symmetry in a vertical line - identify and describe the properties of 3D including the number of edges, vertices and faces - identify 2D shapes on the surface of 3D shapes	Revise previous year groups vocabulary. Pentagon Hexagon Octagon Prism Cylinder Cone Edges Vertex/vertices Faces Symmetry Symmetrical	Lego Symmetry \qquad \qquad
	Comparing and classifying - Compare and sort common 2D/3D shapes and everyday objects		https://mathsframe.co.uk/en/resources/resource/114/s orting-3d-shapes-on-a-carroll-diagram There are several questions that you could select from or the children. Another way of using ICT during Maths lessons.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Year 3	Identifying shapes and their properties - Revision of shapes from Year 1 and 2	Revise previous year groups vocabulary Polygon	Visualising I am thinking of a 3dimensional shape which has faces that are triangles and squares. What could my shape be?	Links to measure 2D Shape Challenge What's the same, what's different?.What is the same and different about these three2-D shapes? \square \square 0
	Drawing and constructing - draw 2D shapes and make 3D shapes using modelling materials - recognise 3D shapes in different orientations and describe them	Orientation	Other possibilities Oneface of a 3-D shape looks like this. What could it be? Are there any other possibilities? possibilities?	Using the free Geoboard app the children can draw shapes and explain their properties through voice recording.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

		 https://www.transum.org/software/Online Exercise/Sh apesInTheStars/
Angles - recognise angles as a property of a shape or a description of a turn - identify right angles/recognise two right angles make a half turn/three make a three quarter turn/four complete a turn - identify whether angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Angles Right angle Half turn Three quarters of a turn Horizontal lines Vertical lines Pairs of perpendicular lines Pairs of parallel lines	Convince me Which capital letters have perpendicular and / or parallel lines? Convince me. Who do you agree with?

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

			Perpendicular and parallel line video.Simple and easy to understand. https://www.bbc.co.uk/bitesize/topics/zb6tyrd/articles/ zp327hv

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	triangles based on their properties and sizes		Quadrilateral song https://www.youtube.com/watch?v=WMkY uIku9Q
	Angles - identify acute and obtuse angles and compare and order angles up to two right angles by size	Right-angled triangle Acute Obtuse	Convince me Ayub says that he can draw a right angled triangle which has another angle which is obtuse. Is he right? Explain why.
Year 5	Identifying shapes and their properties - identify 3D shapes including cubes and other cuboids from 2D representations	Revise previous year groups vocabulary.	What's the same, what's Visualising look at large cube which is ande up of different? What is the smane and what is different smaler cubes.

Fairisle Junior School GEOMETRY: PROPERTIES OF SHAPES

			the pieces to make a trapezium. https://www.transum.org/Maths/Activity/Polygon Piece s/

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Fairisle Junior School

GEOMETRY: PROPERTIES OF SHAPES

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Year 6	Identifying shapes and their properties - recognise, describe and build simple 3D shapes (inc. making nets) - illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius	Revise previous year groups vocabulary. Nets Dimensions Opposite angles Radius Diameter Circumference	What's the same, what's different?.What is the same and what is different about the nets of a triangular prism and a square based pyramid?	Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities.
	Drawing and constructing - recognise, describe and build simple 3D shapes (inc. making nets) - draw 2D shapes using given dimensions and angles		Other possibilities isosceles triangle is degrees. What could the triangle look like-draw it. possibilities. Draw a net for a cuboid that has a volume of 24 $\mathrm{~cm}^{3}$. Drow a ring around the lefter of the correct	

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Fairisle Junior School

GEOMETRY: PROPERTIES OF SHAPES

Glossary

These terms have been described to the level of our most able Year 6 child.
When describing the properties of these shapes to children you will have to use your teacher's judgement to decide how to describe these shapes in an appropriate way.

Example: A Year 1 child may describe a square as 'a 2D shape with 4 equal sides'.
However, as the children progress you would expect them to be able to articulate the properties of shapes in a much more sophisticated way.
A Year 6 child may describe a square as 'a $2 D$ shape with 4 equal sides and 4 vertices; this means the shape is a quadrilateral. It has four equal angles too which makes it a regular shape. The four angles are all equal at 90° and total 360°; this is the same total for all quadrilaterals. The shape has 2 sets of parallel lines but no perpendicular lines.'

	Term	Definition	Example
	Two- dimensional (2D)	A shape that only has two dimensions; length and width (height)	
	Three-dimensional (3D)	A shape that has three dimensions; length, width(height) and depth.	

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Rectangle	Polygon/quadrilateral with 4 sides and 4 vertices. 4 right angles at 90°. Opposite sides (2 sets) parallel lines.	
Square	Polygon/quadrilateral with 4 sides and 4 vertices. 4 right angles at 90°. All 4 sides are equal and opposite sides are parallel.	
Circle	A round, 2D shape. All points on the edge of the circle are at the same distance from the center and the angles in a circle total 360°.	
Triangle	Triangles are polygons with the least possible number of sides (three). The three internal angles of a triangle always add to 180 degrees.	

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	Octagon	A 2D polygon with 8 straight sides and 8 interior angles.
	Hexagon	A 2D polygon with 6 straight sides and 6 interior angles.
Pentagon	A 2D polygon with 5 straight sides and 5 interior angles.	
Sphere	A 3D shape with 1 curved face and no edges or vertices. Every point on the surface is the same distance from the centre.	
	A 3D shape with flat sides. It has 6 square faces, 8 vertices and 12 edges.	

Fairisle Junior School

GEOMETRY: PROPERTIES OF SHAPES

	Cuboid	A 3D shape with flat sides. It has 6 rectangular faces, 8 vertices and 12 edges.
Pyramid	A 3D shape with flat sides. It has a base made from a polygon. Each edge is joined by triangles which then meet at a top which is a vertex.	
A 3D shape with flat sides. It has two		
ends that are the same shape and size.		
Each edge is joined by rectangles.		
(It has the same cross-section all along		
the shape from end to end; that means if		
you cut through it you would see the		
same 2D shape as on either end.)		

opposite to one another. The body of the

shape is curved.\end{array}\right|\)| Cylinder |
| :--- |
| Cone |

Fairisle Junior School

GEOMETRY: PROPERTIES OF SHAPES

	Edges	The side of a polygon or a line segment where two faces of a 3D shape meet. A point where two lines meet on either 2D or 3D shapes.
Vertex/vertices	An individual flat surface of a solid object/3D shape.	
Faces	A shape or object is symmetrical when one half is a mirror image of the other half. It may be divided by one or more lines of symmetry.	
Polygon	A 2D shape with straight sides that is fully closed (all the sides are joined up). The sides must be straight. Polygons may have any number of sides but due the the sides being joined up the minimum amount of sides is 3.	

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	Angle	The space between two intersecting lines.	
	Right angle	An angle that is measuring 90° exactly.	
	Horizontal	A line that runs left and right. On a coordinate grid it would have the same y coordinate at any point.	A line that runs up and down. On a coordinate grid it would have the same x coordinate at any point.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Parallel	Lines that are an equal distance apart and will never meet.	
	Trapezium	A 2D quadrilateral that has one pair of parallel sides.
Kite	A Kite is a 2D quadrilateral shape with two pairs of equal-length adjacent (next to each other) sides.	
Equilateral triangle	A polygon with 3 equal sides. The three interior angles are equal (60°) and always add up to 180°.	

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	Isosceles triangle	A polygon with 3 sides but 2 of which are equal. 2 interior angles are equal and always add up to 180°.
	Scalene triangle are equal. None of the angles are equal to one another but always add up to 180°.	
Parallelogram	A 2D quadrilateral that has 2 sets of opposite sides that are parallel and 2 sets of opposite angles that are equal.	A 2D quadrilateral that has 4 equal sides and 2 sets of opposite angles that are equal.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Quadrilateral	A 4-sided 2D shape	
Right-angled triangle	A polygon with 3 sides where one of the angles are equal to 90°. All 3 angles always add up to 180°.	
Acute	An angle which is less than the size of a right angle 90°.	
Obtuse	An angle which is greater than a 90° (or a straight line) but less than the size of a half turn 180°.	Obtuse Angle

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	Degrees	The unit of measure used to measure the size of an angle. E.g. $360^{\circ} 180^{\circ} 90^{\circ}$
	Regular	A shape that has sides that are equal and interior angles that are equal. A shape that has sides of any length and angles of any size.
	Irregular	An angle which is greater than a 180° (or a straight line) but less than the size of a full revolution 360°.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

Angles at a point	Have a common endpoint which is the centre of a circle. The sum of the angles around a point would always be 360°.	
	Nets	A pattern that you can cut and fold to make a model of a solid 3D shape.
	Dimensions	A measurable size of something. Most often refers to length, width and height.

Fairisle Junior School
GEOMETRY: PROPERTIES OF SHAPES

	Opposite angles	Where two lines intersect, the opposite angles are equal to one another.
	Radius	The distance from one side of a circle to the centre point. Radius $\times 2$ = Diameter of a circle The distance from one side of the circle to the opposite side. Diameter is equal to twice its radius.
Circumference	The measured distance around the edge of a circle.	
	Revolution	A full turn within a circle $=360^{\circ}$

