1) a) Share these counters equally between the boxes. Complete the statement and calculation.

2) a) Draw circles around these counters to make equal groups that match the statement. Complete the calculation to match the image.

3) Mrs Daily asks six children to get into groups of six. How many groups are there? Circle the bar model that could be used to solve this problem, before calculating the answer.

4) Complete these calculations.

$12 \div 1=\ldots=1$	
$-2000 \div 1$	$1=1064 \div$

1) a) Share these counters equally between the boxes. Complete the statement and calculation.

2) a) Draw circles around these counters to make equal groups that match the statement. Complete the calculation to match the image.

3) Mrs Daily asks six children to get into groups of six. How many groups are there? Circle the bar model that could be used to solve this problem, before calculating the answer.

4) Complete these calculations.

$12 \div 1=\ldots=1$	
$-2000 \div 1$	$1=1064 \div$

1) Lucy has used these different representations to show $3 \div 3=1$. Which representation is incorrect? Explain why it
 is incorrect.

3
3

$$
3 \text { groups of } 1
$$

2) a) Marni has been completing calculations. Look at her work and decide whether she is correct or incorrect.
If she is incorrect, can you write the correct answer?

Calculation	Correct or Incorrect?	Correct Answer
$75 \div 1=1$		
$987 \div 1=1$		
$1 \div 1=1$		

b) Explain what happens to a number when it is divided by one.
3) Do you agree or disagree with Jerimiah's statement? Explain your answer.

When I divide a number by itself, the answer will always be 1 .

1) Lucy has used these different representations to show $3 \div 3=1$. Which representation is incorrect? Explain why it is incorrect.

2) a) Marni has been completing calculations. Look at her work and decide whether she is correct or incorrect.
If she is incorrect, can you write the correct answer?

Calculation	Correct or Incorrect?	Correct Answer
$75 \div 1=1$		
$987 \div 1=1$		
$1 \div 1=1$		

b) Explain what happens to a number when it is divided by one.
3) Do you agree or disagree with Jerimiah's statement? Explain your answer.

When I divide a number by itself, the answer will always be 1 .

1) When the number in the outer segment of the circle is divided by the number in the middle segment of the circle, it makes the number in the white, inside segment of the circle. Using all of the following digits, can you complete this diagram?

1	1	1	
3	3	4	
4	6	6	
8	10		

2) a) Using the digit cards below, complete all the comparison statements. For every solution, each digit card may only be used once. (For each solution, one of the digit cards will not be used.) All numbers being divided must be divided by 1 or by themselves. Find eight possible answers.
 \div \qquad $=$ \qquad \div \qquad
\qquad $\div 1<$ \qquad $\div 1$
$4 \div 1>$ \qquad $\div 1$
b) Create your own problem like the one above, using the <, > and = symbols.
Challenge a friend to solve it.

1) When the number in the outer segment of the circle is divided by the number in the middle segment of the circle, it makes the number in the white, inside segment of the circle. Using all of the following digits, can you complete this diagram?

1	1	1			
3	3	4			
4	6	6			
8	10				

2) a) Using the digit cards below, complete all the comparison statements. For every solution, each digit card may only be used once. (For each solution, one of the digit cards will not be used.) All numbers being divided must be divided by 1 or by themselves. Find eight possible answers.

\div \qquad $=$ \qquad \div \qquad
\qquad $\div 1<$ \qquad $\div 1$
$4 \div 1>$ \qquad $\div 1$
b) Create your own problem like the one above, using the
<, > and = symbols.
Challenge a friend to solve it.
