1)

one

digit
place digits

unit
2)

Describe It	There is 1 group of 9 ones.	There are 5 groups of 0.
Write It	$9 \times 1=9$	$0 \times 5=0$

3)

$7 \times 0=\underline{0}$	$35 \times \underline{0}=0$	$88=\underline{1} \times 88$	$1 \times \underline{53}=53$
$12 \times 1=\underline{12}$	$0=$ accept any number $\times 0$	$2901=1 \times \underline{2901}$	$0=3004 \times \underline{0}$

4)

0							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$		

1) Accept an explanation supported by examples that shows that Freddie is correct when multiplying by I but is incorrect when multiplying by 0 . For example: Freddie is correct that when multiplying by 1 , the number being multiplied will stay the same. With 5×1 there is one group of 5 which equals 5 . However, when multiplying by
 0 in 2×0, there are no groups of 2 so the answer will be 0 . When multiplying any number by 0 , the answer will be 0 .
2) a)

b.
 (1) c. $1+1+1+1=4$

b) Accept an explanation that shows that D is the odd one out because it is just one group of 4 whereas the other groups show 4 lots of I.
3)

Calculation	Correct or Incorrect?	Correction
$8 \times 1=8$	Correct	
$0 \times 12=12$	Incorrect	$0 \times 12=0$
$1 \times 7=0$	Incorrect	$1 \times 7=7$
$10 \times 0=10$	Incorrect	$10 \times 0=0$

1) a) There are many possible solutions to this problem. For example,

b)

