1) Circle the bar models that could be placed on each number line correctly.

Then, write which fraction on the number line they are equivalent to.
a)

b)

2) Place the equivalent fractions in the correct place on the number lines.
a) $\frac{3}{5} \frac{1}{5} \quad \frac{1}{1}$

b) $\frac{12}{12} \quad \frac{6}{8} \quad \frac{3}{12}$

1) Circle the bar models that could be placed on each number line correctly.
Then, write which fraction on the number line they are equivalent to.
a)

b)

c)

2) Place the equivalent fractions in the correct place on the number lines.
a) $\frac{3}{5} \frac{1}{5} \frac{1}{1}$

b) $\frac{12}{12} \quad \frac{6}{8} \quad \frac{3}{12}$

3) Which representation is not equivalent to the fraction shown on the number line?

Explain your reasoning.

B

D

2) Year 3 are finding equivalent fractions to the ones shown on the number line.

Do you agree with Toby? Use reasoning to explain your answer.
3) Two children discuss equivalent fractions when counting forwards from 0 on a number line.

Who do you agree with? Show and explain your answer with reasoning.

1) Which representation is not equivalent to the fraction shown on the number line?

Explain your reasoning.

B

C

D

2) Year 3 are finding equivalent fractions to the ones shown on the number line.

Do you agree with Toby? Use reasoning to explain your answer.
3) Two children discuss equivalent fractions when counting forwards from 0 on a number line.

If I make 2 jumps on the number line, I will be equivalent to a fraction in the thirds.

If I make 4 jumps on the number line, I will be equivalent to a fraction in the thirds.

1) Can you represent $\frac{6}{8}$ as a fraction in a variety of ways? Use equivalences on number lines, bar models and number
 shapes as part of your answer.
2)

$\frac{7}{12}$

There is no way of creating an equivalent fraction with an odd denominator for $\frac{7}{12}$.

Is Jacob correct? Prove your answer with reasoning.
3) A blank number line is shown.
a) Use the clues to work out where each shape should go on the number line.

\square I am equivalent to $\frac{5}{5}$.

My numerator is 8 . \square

My numerator is 6 . \square

I am equivalent to $\frac{2}{5}$. \square
b) This shape doesn't have a clue.

Write a clue for it so that it'll go in the empty space on the number line.

1) Can you represent $\frac{6}{8}$ as a fraction in a variety of ways? Use equivalences on number lines, bar models and number shapes as part of your answer.
2)

$\frac{7}{12}$

There is no way of creating an equivalent fraction with an odd denominator for $\frac{7}{12}$.

Is Jacob correct? Prove your answer with reasoning.
3) A blank number line is shown.
a) Use the clues to work out where each shape should go on the number line.

\squareMy numerator is 8 . \square

My numerator is 6 . \square

I am equivalent to $\frac{2}{5}$. \square
b) This shape doesn't have a clue.

Write a clue for it so that it'll go in the empty space on the number line.

