- 1) 2 quarters $(\frac{2}{4})$ are the same as $\frac{1}{2}$.
- 2) a) A 4-shape is equivalent to $\frac{1}{2}$ of 1 whole.
 - b) A 2-shape is equivalent to $\frac{1}{4}$ of 1 whole.
 - c) A 1-shape is equivalent to $\frac{1}{8}$ of 1 whole.
 - d) 42-shapes are equivalent to 1 whole.
 - e) 8 1-shapes are equivalent to 1 whole.
 - f) 2 4-shapes are equivalent to 1 whole.
- 3) a) 1 cube represents $\frac{1}{6}$ of the whole
 - b) 2 cubes represent $\frac{1}{3}$ of the whole.
 - c) $\frac{2}{6}$ are equivalent to $\frac{1}{3}$.
- 1) There are a wide variety of ways in which children can use number shapes and cubes to represent 1/4. Examples include:

- 2) The diagram represents a bar model with 4 squares shaded. $\frac{1}{2}$ (4 out of the 8 squares) are shaded in green. $\frac{1}{4}$ of the shape is 2 squares shaded. As 4 squares are shaded, this represents $\frac{2}{4}$. This equivalent to $\frac{1}{2}$.
- 3) a) Kelsey is correct. $\frac{1}{2}$ or $\frac{6}{12}$ of the bar model is shaded in.

b) $\frac{3}{6}$ is also equivalent to $\frac{1}{2}$ or $\frac{6}{12}$. ($\frac{1}{6}$ is equivalent to $\frac{2}{12}$, $\frac{2}{6}$ to $\frac{4}{12}$ and $\frac{3}{6}$ to $\frac{6}{12}$.)

4) e) is the odd one out. This bar model is the odd one out because $\frac{2}{5}$ are shaded. All the other shapes have the equivalent of $\frac{1}{3}$ shaded

1) Both children are correct. $\frac{4}{8}$ of the shape and $\frac{5}{10}$ of the shape are equivalent to $\frac{1}{2}$ ($\frac{2}{4}$).

- 2) Ahmed is incorrect. For example, $\frac{1}{7}$ has an odd denominator and $\frac{2}{14}$ is equivalent. $\frac{1}{3}$ has an odd denominator too and $\frac{2}{6}$ is equivalent. There are many examples.
- 3) Sadie is incorrect. $\frac{9}{12}$ is equivalent not equivalent to $\frac{3}{8}$. It is equivalent to $\frac{3}{4}$ and $\frac{6}{8}$. However, all other fractions are equivalent to $\frac{3}{8}$.
- 4) There are a wide variety of possible responses. Examples include:

Equivalent to $\frac{1}{4}$	Equivalent to $\frac{1}{3}$	Equivalent to a Different Fraction
8 32	<u>2</u>	$\frac{2}{9} = \frac{4}{18}$ (example)
4 16	<u>8</u> 24	$\frac{3}{7} = \frac{3}{14} \text{ (example)}$
2/8	4 12	$\frac{4}{10} = \frac{2}{5} \text{ (example)}$

