1)

\square

3)
a) $340 \div 10=34$
b) $220 \div 10=22$
c) $5400 \div 100=54$
d) $2100 \div 100=21$
e) $9900 \div 100=99$
f) $320 \div 10=32$

e	c	a	f	b	d

greatest
2)

$1700 \div 10$	$>$	$3400 \div 100$
$700 \div 100$	$<$	$7100 \div 100$
$90 \div 10$	$=$	$900 \div 100$

1) Both children are correct. Dividing by 10 and dividing by 10 again is the same as dividing by 100 . By moving each digit two places to the right, the number becomes 100 times smaller.
2) George has made some errors and not all his division statements are correct.
$1110 \div 10$ does not make 110 . The tens should have been divided by ten to give a one.
$1100 \div 10=110$ is correct.
$10100 \div 100$ does not make 110 . The position of the digits has changed.
$11100 \div 10 \div 10$ does not make 110 . The position of the digits has changed.
3) Accept any correct combinations. For example,

	100	200	300	1500	2000
	1	2	3	15	20
	1000	2000	3000	15000	20000

2 a) Accept any correct numbers. For example:
$2700 \div 10=270$ (7 tens)
$2700 \div 100=27$ (2 tens)

