1）Complete the table．

$$	a） $\int_{[} \times \ldots$	b）$__{\text {＿}} \times$ ．${ }^{\text {a }}=$	c） $18 \times 10=180$
$\begin{aligned} & \text { 茣 } \\ & \text { 己 } \\ & \text { 立 } \end{aligned}$	10 10 10 1 1 1 1 10 10 10 1 1 1 1		
	Every row has \qquad tens counters and \qquad ones counters．There are \qquad rows．Each row has a value of \qquad －．	Every row has $\underline{2}$ tens counters and $\underline{2}$ ones counters．There are 10 rows．Each row has a value of 22 ．	Every row has \qquad tens counter and \qquad ones counters．There are \qquad rows．Each row has a value of \qquad －．

2）a）Write a number story and calculation to match each bar model．The first one has been done for you．

？										There were 10 punnets filled with 12 strawberries each．	$12 \times 10=120$
12	12	12	12	12	12	12	12	12	12		
？											
15	15	15	15	15	15	15	15	15	15		
？											
21	21	21	21	21	21	21	21	21	21		
？											
41	41	41	41	41	41	41	41	41	41		

b）Represent one of the bar models above by drawing it in another way，such as a part－whole model or counters．

1) Look at the two images below. Explain what is the same and what is different about them.

?														
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

| 10 | 1 | 1 | 1 | 1 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 10 | 1 | 1 | 1 | 1 | 1 |

Similarities: \qquad
(10) 1 (1) 1
(10) 11111
(10) 11111
(10) 11111

Differences: \qquad

\qquad

\qquad
\qquad
2) a) Look at the three calculation representations. Which one is the odd one out and why?

b) Draw another model or image that could replace the odd one out.

1) a) Hiba multiplied a two-digit number by 10. Her answer was a multiple of 7 . Her original number had fewer than 6 tens. Shade Hiba's possible calculations on this grid.

7×10	21×10	35×10	32×10
65×10	14×10	63×10	84×10
28×10	40×10	49×10	36×10
77×10	42×10	70×10	24×10

b) One of Hiba's possible calculations is missing from this grid. Can you find the missing calculation?
2) Sam multiplied a three-digit whole number by 10. His three-digit number was an odd number. It had a hundred digit that was a multiple of 3 and a ten digit that was either a 0 or 5 .

What could the original calculation have been? Can you find all of the possible answers? One example has been done for you.
$301 \times 10=3010$

